Arrays Versus ArrayList
Barb Ericson

An array is contiguous storage for items of the same type. Arrays can hold primitive types or object types. Arrays of primitive types hold the values in the arrays. Arrays of object types hold a reference to the object (way of finding the object in memory). Array sizes can't change. The advantage to arrays is that they only use as much space as needed, but they don’t grow or shrink. It is very fast to add elements to an array at an index or to get the value at an index.
An array of integer values:

	5
	32
	-28
	3562
	-39028

An array of objects (Pictures):

	Reference to pict1
	Reference to pict2
	Reference to pict3
	Reference to pict4
	Reference to pict5

ArrayList is a Java class in the package java.util that implements the List interface (in package java.util) using an array. It can only hold objects (not primitive values), but if you try to add a primitive type it automatically boxes the primitive type in one of the wrapper classes (an int value is stored as an Integer class object). A list holds items in order. A list can be added to or removed from. You will often use a list when you don't know exactly how many items you will be storing. The advantage to ArrayLists is that they can grow and shrink as needed, but you might end up with space you really don't need. It is usually fast to add an element to a list (adds at the end) but if the number of elements in the list is larger than the array used to implement the list then a new array is created twice as big as the old array and the elements are copied from the old array. If you add to a list and specify the index to add at all elements at that index and beyond are moved right first to make room.
An example list as an ArrayList object: with size = 2

	Reference to pict1
	Reference to pict2
	Null
	Null
	null

	Arrays
	ArrayList

	Declare an array using: type[]

Example: Picture[] pictArray = null;
	Declare an ArrayList using List<Type> or ArrayList<Type>

Example: ArrayList<Actor> actors = null;

	Create an array using: new type[size];

Example: pictArray = new Picture[5];
	Create an ArrayList using: new ArrayList<Type>();

actors = new ArrayList<Actor>();

	Get an element of an array using: array[index]

Picture currP = pictArray[0];
	Get an element from a list using: list.get(index);

Actor firstActor = actors.get(0);

	Set an element of an array using: array[index]=value;

Example: pictArray[0] = new Picture(100,200);

Replaces anything at that index in the array.
	Set an element of a list using:

actors.set(0,new Bug());

Replaces anything at that index in the list.

	Getting the length of an array: pictArray.length

(length is a public field of the array so that is why there isn't any () since it isn't a method)
	Getting the length of the list: actors.size()

The size is a method of the list so you do need the ().

	Looping through an array
You can use a for-each loop

for (Picture pict : pictArray)

{

 // do something to pict

}

Or a general for loop

Picture pict = null;

for (int i = 0; i < pictArray.length; i++)

{

 pict = pictArray[i];

 // do something to pict

}
	Looping through a list
You can use a for-each loop

for (Actor actor : actors)

{

 // do something with actor

}

Or you can use a general for loop

Actor actor = null;

for (int i = 0; i < actors.size(); i++)

{

 actor = actors.get(i);

 // do something with actor
}

	
	Additional things you can do with lists:

isEmpty() will return true if the size() is 0

contains(obj) will return true if the element is in the list

add(index,obj) adds the object at the index, but first moves all current objects at the given index and above to the right to make room.

remove(obj) removes the object from the list and returns it

